General questions

How do vector vaccines work?

Me gusta





Viral vector-based vaccines differ from most conventional vaccines in that they don’t actually contain antigens, but rather use the body’s own cells to produce them. They do this by using a modified virus (the vector) to deliver genetic code for antigen, in the case of COVID-19 spike proteins found on the surface of the virus, into human cells. By infecting cells and instructing them to make large amounts of antigen, which then trigger an immune response, the vaccine mimics what happens during natural infection with certain pathogens - especially viruses. This has the advantage of triggering a strong cellular immune response by T cells as well the production of antibodies by B cells.

There are two main types of viral vector-based vaccines. Non-replicating vector vaccines are unable to make new viral particles; they only produce the vaccine antigen. Replicating vector vaccines also produce new viral particles in the cells they infect, which then go on to infect new cells that will also make the vaccine antigen. The COVID-19 viral vector vaccines use non-replicating viral vectors.

Once injected into the body, these vaccine viruses begin infecting our cells and inserting their genetic material – including the antigen gene – into the cells’ nuclei. Human cells manufacture the antigen as if it were one of their own proteins and this is presented on their surface alongside many other proteins. When the immune cells detect the foreign antigen, they mount an immune response against it.

This response includes antibody-producing B cells, as well as T cells, which seek out and destroy infected cells. T cells do this by examining the repertoire of proteins expressed on the surfaces of cells. They have been trained to recognise the body’s own proteins as ‘self’, so if they notice a foreign protein, such as an antigen from the pathogen, they will mount an immune response against the cell carrying it.

One challenge of this approach is that people may previously have been exposed to the virus vector and raise an immune response against it, reducing the effectiveness of the vaccine. Such “anti-vector immunity” also makes delivering a second dose of the vaccine challenging, assuming this is needed, unless this second dose is delivered using a different virus vector.

COVID-19 viral vector vaccines:

  • Use non-replicating viral vectors
  • Insert the vector’s genetic material into the human cells
  • These cells manufacture the antigen which is then detected by the immune system

Similar videos